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1 Introduction

This paper describes the application of a Growth-at-Risk (henceforth, GaR) model

that provides an open-source baseline procedure that can be used by researchers

and policymakers to work on different applications of this methodology. The paper

provides a description of the GaR methodology and the main components of its

related code. This description includes an ad hoc constructed Financial Conditions

Index used to feed the GaR model. To facilitate future applications, the code is based

on R as its programming language, allowing researchers to replicate the model using

a free software environment.1

The GaR concept was originally developed as an extension of value-at-risk (VaR)

models. While VaR models estimate expected investment losses conditional on mar-

ket conditions, GaR models extend this idea to a macro level by estimating the ex-

pected distribution of GDP growth conditional on financial market conditions and

other macroeconomic factors (henceforth, macrofinancial conditions). By connect-

ing financial market conditions with expected GDP growth, GaR models provide an

assessment of the real-sector implications of the build-up of systemic risk. As dis-

cussed below, GaR models can be also adjusted to be used as a platform for policy

evaluation, providing signals on how the relationship between financial stress and

real-sector outcomes vary, for instance, when macroprudential policies are in place.

GaR applications are characterized by two key parameters that define the scope

of the analysis. First, a researcher needs to inspect the ‘historical’ relationship

between macrofinancial conditions and GDP growth for one or several countries of

interest. Most applications focus on periods between 20 to 30 years analyzed using

data at a quarterly or monthly frequency. Second, a decision needs to be made

regarding the time-horizon that will describe the relationship between macrofinancial

conditions and future GDP growth. Typically, an analyst will be interested in

1 The related material is available at the C-GARP website of the Center for Latin American
Monetary Studies (CEMLA).
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exploring the effect of macrofinancial conditions on GDP growth one or two quarters

ahead.

Once the relationship between macrofinancial conditions and GDP growth has

been established by using quantile regression methods, one can estimate the shape

of the expected GDP growth distribution. Conditional on the stance of relevant

macrofinancial conditions, this estimated distribution tells us that GDP growth is

not expected to fall below a certain threshold with a high probability such as 95%,

which defines the confidence level of the assessment. In other words, we can draw

from the distribution an assessment of how ‘low’ the GDP growth rate could fall,

provided that GDP growth falls, for instance, below the 5th percentile of its expected

distribution.

Figure 1 provides a hypothetical example of a GaR estimation. It shows an

estimated probability density function of GDP growth with a mean of 2.5%. An

adverse scenario is defined, as a reference, as a realization of a GDP growth rate

of 0%. In this example, the GaR with a probability of 5% is estimated at a GDP

growth rate of -2.3%. These results means that with a probability of 5%, the GDP

growth rate will be equal or lower than -2.3% h periods ahead.

Figure 1 represents a benchmark estimation that can be used to evaluate how

the GaR value changes depending on the stance of macrofinancial conditions. An

example of a counterfactual exercise of this type is depicted in Figure 2. This

exercise begins by assuming a negative shock to macrofinancial conditions equal to

a one standard deviation shift in a macrofinancial conditions indicator. As depicted,

this shock shifts the entire expected density of GDP growth to the left (represented

by the dashed red line). The area marked by the points A, B, and C reflects the

impact of the negative shock on the left tail of the GDP growth distribution: it

shows that the shock increases the probability of realizing a negative GDP growth

rate proportionally to the size of this area.
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Figure 1: Example of a GaR Estimation. This graph describes an hypothetical
example of a GaR estimation. The horizontal axis represents the estimated GDP
growth rate along the expected distribution of GDP growth conditional on a given
stance of macrofinancial conditions. A ‘Stress Scenario’ is represented by a GDP
growth rate below 0%. GaR at 5% represents the maximum expected GDP growth
rate (in this example -2.3%) that would be realized if GDP growth falls below the
5th percentile of its expected distribution. This scenario is expected to materialize
with a probability of 5%.

This example highlights the advantages of the GaR method. Using a simple and

parsimonious reduced-from forecasting system, an analyst can obtain estimates of

how the expected GDP growth distribution changes when financial shocks hit an

economy. Moreover, the method allows an analyst to select macrofinancial variables

that better explain GDP growth trends, tailoring the model for different macroeco-

nomic and institutional environments.

Despite these salient features, important caveats should be kept in mind when

estimating GaR models. First, the lack of an identification structure when inspecting

the relationship between GDP growth and macrofinancial conditions means that

the estimation should not be interpreted as reflecting causal links. Second, the

estimation provides a ‘guess’ about the expected density of GDP growth obtained
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Figure 2: Example of a GaR counterfactual analysis. This graph describes a
counterfactual analysis that can be performed with the GaR method. The horizon-
tal axis represents the estimated GDP growth rate along the expected distribution
of GDP growth conditional on a given stance of macrofinancial conditions. A ’Stress
Scenario‘ is represented by a GDP growth rate of 0%. The dashed red curve repre-
sents a left-shift in the expected GDP growth distribution following a one standard
deviation negative shock on macrofinancial conditions. The left-shift in the GDP
growth distribution increases the probability of realizing a negative GDP growth
rate by an amount equal to the A B C area (‘impact on the tail’).

through the lens of past events. To the extent that sunspot shocks in the past can

bias the relationship between macrofinancial conditions and GDP growth, an analyst

should be cautious when interpreting the findings.2 Third, any policy advice derived

from GaR models is limited given the lack of insights about underlying institutional

mechanisms explaining the relationship between macrofinancial conditions and GDP

growth. Therefore, GaR models work best when complemented with robustness

checks and qualitative evidence that can shed light on the reasons explaining the

phenomena identified in the estimations.

The applications of GaR models originate in seminal contributions by Giglio et al.

2 In Section 4 we provide a discussion on how the COVID-19 pandemic illustrates the limitation
of GaR models when assessing stress situations driven by exogenous and unexpected shocks not
captured in economic fundamentals.
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(2016) and Adrian et al. (2019). A complementary description of GaR methods

focused on the use of GaR models at the International Monetary Fund (IMF) is

provided by Prasad et al. (2019). Recently, the GaR method had been extended

to be applied for policy evaluation in different settings. For example, Sánchez and

Röhn (2016) show for a group of OECD countries that institutional factors such

as a stronger banking supervision and larger international reserves are associated

with more moderated shifts in expected GDP growth distributions when financial

shocks hit. Aikman et al. (2019), Franta and Gambacorta (2020), and Galán (2020)

provide evidence that active macroprudential policies mitigate the downside risks

of low GDP growth in stress scenarios. Finally, the literature has been evolving to

apply the GaR approach by looking at different outcome variables, such as capital

flows (see, e.g., Gelos et al., 2019 or Eguren-Martin et al., 2021).

This project extends previous platforms to estimate GaR models, which include

a Python-based framework developed at the IMF. Our approach is different in three

ways. First, the programming code allows for more degrees of methodological flexi-

bility as explained below, what matters when it comes to adapt a forecasting model

to different institutional environments. Second, the model includes the calculation

of a Financial Conditions Index that can be used as a monitoring tool, even beyond

the GaR framework. Finally, the model was adjusted to allow using panel data

estimations for multiple countries or regions within the GaR framework.

The rest of the paper is organized as follows. Section 2 describes the steps needed

to implement and interpret a GaR estimation using an example from a panel of Latin

American economies. Section 3 explains the construction of the ad hoc Financial

Conditions Index used in the GaR estimation. Section 4 provides examples of how

the GaR methodology can be extended for purposes of policy evaluation. Section 5

concludes.3

3 In Section A.2 in the Appendix we further provide the definition and sources of the variables
used in the GaR model.
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2 Growth at Risk Methodology

2.1 Identifying risk factors

GaR applications begin with the identification of relevant macrofinancial variables

that could arguably explain dynamics in GDP growth in a given country (see, e.g.,

Adrian et al., 2019 or Prasad et al., 2019). Researchers typically rely on a com-

bination of local macroeconomic conditions, local macrofinancial conditions, and

international macrofinancial conditions. The selection of variables will depend, for

example, on a country’s risk profile, its economic and financial openness, or the

characteristics of its financial system.

Table 1 reports a diagram describing a few examples of relevant variables that

have been used in GaR applications. The bucket of Local Macroeconomic Conditions

includes broad proxies for the stance of the macroeconomic cycle. Most studies rely

only on a lagged measure of GDP growth to capture trend effects. Measures of price

and sovereign risk stability could also be considered for this purpose.

The second bucket shifts the focus towards macrofinancial conditions that are

specific to a given country. Most studies look at proxies capturing trends in the

credit market (e.g., Credit-to-GDP ratio), interest rate differentials vis-à-vis an in-

ternational benchmark, and measures of exchange rate trends. Several applications

rely on aggregated indices combining multiple dimensions of local macrofinancial

conditions. We present an example of an index in Section 3.

Finally, international macro conditions include measures of global financial stress

that capture common risk factors across countries beyond the idiosyncratic charac-

teristics of the analyzed economies. Studies often rely on measures of global stock

market volatility such as the Chicago Board Options Exchange Market Volatility

Index (VIX Index), measures of capital flows volatility, or global US Dollar price

indices. To provide a clear statistical distinction between the three buckets, re-
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GDP Risk Factors

Local
Macroeconomic

Local
Macrofinancial

International
Macro

Conditions Conditions Conditions

Past GDP growth Credit-GDP ratio Stock market index
Sovereign Risk Interest rates Capital flows

volatility
Inflation Exchange rates US Dollar Index

Table 1: Selection of GDP risk factors. This diagram shows a categorization
of relevant GDP risk factors often used in the GaR literature. Most studies consider
three buckets of variables that could potentially explain GDP growth prospects: Lo-
cal Macroeconomic Conditions, Local Macrofinancial Conditions, and International
Macroeconomic Conditions. The diagram lists a few examples that could be used
within each bucket. It should be noted that the selection of variables depends first
on a qualitative assessment of relevant factors that impact GDP growth in a specific
country or group of countries.

searchers typically orthogonalize the international conditions bucket with respect to

local macrofinancial conditions. This adjustment can be done, for instance, by using

only the residuals of a regression of international against local conditions as a proxy

for global risk factors.

Three aspects related to the selection of GDP risk factors should be remarked.

First, most GaR applications rely on a reduced number of variables. Second, if a

bucket considers more than one variable, researchers often opt for grouping these

variables into a single indicator. Finally, researchers often choose to consider some

variables measured both in levels and in terms of their volatility as separate variables

entering a GaR model. This feature is also explained in the context of the Financial

Conditions Index described in Section 3.

7



Figure 3: Example of a Cumulative Distribution Function (CDF). This
figure depicts an hypothetical cumulative distribution function of GDP growth. The
x-axis represents the size-ranked GDP growth observations. The y-axis shows the
accumulated share of observations covered below (i.e. to the left) of each GDP
growth observations. For example, the 0.5 quantile (or 50th percentile) of the dis-
tribution at τ = 0.5 represents a GDP growth rate of 2.5%. Therefore, GDP growth
is expected to be equal or smaller than 2.5% with a probability of 50%.

2.2 Quantile regressions

Having identified relevant macrofinancial risk factors, the next step is to estimate

the relationship between these risk factors and GDP growth using quantile regres-

sions. This method allows characterizing the entire probability density of GDP

growth conditional on the stance of macrofinancial conditions. Therefore, we are

not interested in point estimates of GDP growth but rather in understanding how

macrofinancial conditions affect the distribution of expected GDP growth. Quantile

regressions explore heterogeneous responses along the distribution of GDP growth

asking, for instance, whether the left tail of the distribution experiences a greater

sensibility to macrofinancial conditions.

Quantile regressions can be described as a generalization of OLS estimations in

which we estimate the expected mean of a dependent variable conditional on a set
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of covariates:

E(y|x) = xβm (1)

In Eq. 1, the estimated effect is represented by the term βm, which describes

the sensitivity of the mean dependent variable to changes in the covariate x. The

quantile regression approach is different in that we estimate the effect of x on a

given percentile of the GDP growth distribution.4 That is, the regression will result

in as many coefficients as quantiles τ are being considered for the analysis.

Percentileτ (y|x) = xβτ (2)

Eq. 2 highlights that the interpretation of quantile regressions is about changes in

the GDP growth rate that represent a given percentile of its distribution conditional

on covariates x. Formally, the τ quantile of the variable y represents a threshold

value of y such that with a probability of τ , y will be equal or smaller than this

threshold. We label this quantile µτ as follows:

τ = P (GDP 6 µτ ) ≡ FGDP (µτ ) (3)

Eq. 3 shows that the τ quantile of GDP growth can be drawn from the respec-

tive Cumulative Density Function (CDF) of GDP growth (FGDP ), which connects

the observed GDP growth rates with the accumulated probability over the distri-

bution. An example of a CDF function is reported in Figure 3, which depicts the

distribution of observed values for GDP growth (x-axis) against the percentiles of

the distribution, labeled as τ . In this example, the 0.5 quantile of the distribution

4 Note that quantiles are defined as points along a distribution that refer to the rank order of
values. Percentiles can be understood as a description of quantiles relative to 100. For example,
the quantile 0.5 represents the 50th percentile of a distribution.
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equals µτ = 2.5%. Therefore, we expect GDP growth to be equal or smaller than

2.5% with a probability of 50%.

In a quantile regression we are interested in estimated quantiles that emerge

conditional on the stance of explanatory variables. The intuition behind this ap-

proach is represented in Figure 4. Panel A shows a scatter plot of GDP growth

(y-axis) against a financial conditions index ranging from 0 to 1, where 1 implies

tighter financial conditions (FCI, x-axis). Panel B depicts the distribution of GDP

growth observations for a given value range of FCI around its median. This panel

also depicts red marks representing the quantiles of GDP growth for each value of

FCI. Panel C shows these quantiles for three values of FCI in the data.

The quantile regression is finally depicted in Panel D, which contrasts the esti-

mated linear regressions for the 0.2th (red line) and 0.8th (blue line) quantiles of

GDP growth. In this example, a one percentage point (p.p.) increase in FCI leads to

a 0.6 p.p. decrease in the 0.2th quantile of the GDP growth distribution. Therefore,

we would expect that increases in FCI will shift the left-tale of the GDP growth dis-

tribution further to the left. On the contrary, FCI cannot significantly explain the

0.8th quantile of GDP growth. In this example, an increase in FCI leads therefore

to larger probabilities of negative growth, while it does not affect the probability of

higher GDP growth rates.

The exercise depicted in Figure 4 highlights the benefits of the quantile regression

approach in GaR models: it allows a researcher to explore how changes in macrofi-

nancial conditions deferentially affect the quantiles of the GDP growth distribution.

Formally, a least square estimation solves a model for the parameter estimates β̂0

and β̂1 by taking those values of the parameters that minimize the sum of squared

residuals. The intuition of this approach is that the estimated function will approach
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Panel A Panel B

Panel C Panel D

Figure 4: Intuition of a quantile regression. This panel describes the intu-
ition behind a quantile regression estimation. Panel A depicts the (hypothetical)
relationship between GDP growth (y axis) and a financial conditions index (FCI,
x axis) for a set of countries in a given quarter. Panel B restricts the sample to
GDP-growth observations around a value of 0.5 in the FCI. In this panel, the marks
represented by red circles show the quantiles of the GDP growth distribution eval-
uated at different values of the FCI. Panel C replicates this latter exercise for three
values of FCI. Panel D further adds two lines representing linear regressions at the
80th (red line) and 20th (blue line) percentiles of GDP growth.

the population’s conditional mean for large samples:

min
∑
i

(yi − (β0 + β1x1))2 (4)

The quantile regression (QR) approach can be seen as a generalization of this

linear regression method. Recall that a sample median (i.e., the quantile 0.5) can

be computed as the value m of a distribution that minimizes the mean absolute
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distance between Y and m (see, e.g., Hao and Naiman, 2007, for details). We can

label this average distance as E |Y −m|. By construction, the minimum distance

E |Y −m| is reached when the estimated median m has the same number of data

points left and right from its estimated value. Similarly, the quantile q = 0.8 (i.e.,

the 80th percentile) of a distribution can be understood as a minimization of the

sum of weighted distances from the sample points. The weights are represented by

the value q for data points above the estimated quantile and 1 − q for data points

below the estimated quantile. This idea is represented in Eq. 5:

Q(βq) =
N∑

i:yi≥x
′
iβ

q
∣∣∣yi − x′iβq∣∣∣+

N∑
i:yi<x

′
iβ

(1− q)
∣∣∣yi − x′iβq∣∣∣ (5)

Eq. 5 represents the empirical equation of a QR model. It shows that we seek to

estimate a function of estimated quantiles (βq) represented by the minimum weighted

sum of distances between a data point and its estimated quantile. The weights q and

1− q ensure that the quantiles will be estimated such that there is a share q of data

points below each quantile. For example, the function Q(β0.8) would be estimated

such that coefficient β0.8 represents the quantile 0.8 of a distribution with 80% of

the respective data points below the estimated quantile.

This approach has three key features that facilitate the econometric analysis

compared to a linear regression model. First, a QR model has a monotone equivari-

ance property, meaning that any monotone transformation of the variable y (e.g.,

taking its log) will result in estimating a quantile q subjected to the same transfor-

mation. Second, QR models do not require the usual homoscedasticity assumption

from linear regression models. This assumption states that the error terms in the

model are constant over the distribution of an explanatory variable x. Third, QR

models are insensitive to outliers, in opposite to estimations of conditional means.

Standard errors are typically obtained in QR models via bootstrap methods. The
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usual analytical asymptotic standard errors face the problem of strongly relying on

the assumption that the error terms are independent and identically distributed.

Given that this assumption rarely holds, researchers often estimate standard errors

using bootstrap methods. This approach relies on Monte-Carlo simulations to es-

timate a ‘sample’ distribution of a parameter (i.e., a standard error in our case)

by taking multiple random samples from the data. In practice, one estimates the

function Q(βq) multiple times in order to get a standard deviation of its slope, which

can then be used for statistical inference. We refer to Hao and Naiman (2007) for

details on computing confidence intervals in QR models.

From the perspective of econometric identification, a few estimation conditions

need to be carefully addressed in the GaR context. First, the econometric QR

model will typically consider lags between the dependent variable and the macro-

financial variables. The number of lags with which the explanatory variables enter

the model will define the forecasting horizon once the expected GDP distribution is

constructed. Second, a researcher needs to access, if possible, quarterly or monthly

macroeconomic data for long periods (typically 10 years at least) in order to maxi-

mize the observations and obtain a proper identification.

Third, if several countries or regions are being considered in a panel model,

the definition of the variables must be carefully revised. Panel models have the

advantage of allowing the inclusion of country fixed effects, mitigating concerns

about omitted variable bias. In these cases, Eq. 5 must be adjusted, with the

estimated quantiles Q̂ taking the following form:

Q̂τ
i,t(yi,t+h|xi,t) = ατi + β̂τx ∗ xi,t + ui, (6)

where, for each quantile q and country i, α is a constant term, β̂qx is the estimated

quantile coefficient associated with risk factor x at time t, and ui is a country fixed

effect. The GaR model programmed in the code that accompanies this article is
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adapted to be used with panel data, an improvement compared to previous models

such as the IMF GaR model.

2.3 From quantile regressions to GDP growth distributions

The predicted values from the quantile regression are the main input to construct

expected conditional distributions of GDP growth under specific methodologies.

For instance, the quantiles could be chosen in equally spaced values, such as in

{0.05, 0.10, . . . , 0.95}, to allow for a more faithful representation of the support and

the density of the distribution. It follows that one needs to estimate the entire

distribution of expected GDP growth to obtain distributional quantities of interest,

such as standard deviations of future growth.

To fit the entire distribution, one can follow parametric or non-parametric ap-

proaches. The former ones do not impose a particular shape for the distributions,

simplifying the assumptions of the estimation. However, we do need to choose a

kernel function and a bandwidth parameter. The kernel function assigns weights to

the information contained within the bandwidth. Then, for a given bandwidth ω,

the observations around the point xi that are in the set [xi−ω, xi +ω] are weighted

according to the kernel function. For example, if one uses a constant kernel, each of

the points within the described set will be equally weighed on the estimation of the

fitted values.

Intuitively, the bandwidth represents how much information around a determined

point is used to estimate the function around it. A very narrow bandwidth (ω → 0)

implies using a series of delta functions around the observed points in the probability

distribution function. Then, depending on the kernel, the cumulative distribution

function will be approximated by a series of step functions. Conversely, the use of

a very wide bandwidth (ω → ∞) implies using the kernel function on the whole

collection of observations and, consequently, the probability density function will
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Figure 5: Representation of a set of estimated quantiles (red dots) and
their associated fitted cumulative distribution using a non-parametric
approach (green line).

be the kernel function centered on the mean of the sample. This latter approach

represents a completely smoothed approximation that would not receive information

about the sample points.

The specification implemented in the GaR model described below uses a tri-

weighted kernel function, while the corresponding bandwidths are those suggested

by Fan and Gijbels (1996). An interested reader could apply more sophisticated

methods for choosing the bandwidth (see, e.g., Tsybakov, 2008, and Turlach, 1993).

Figure 5 schematically represents some estimated quantiles (red dots) and their

associated fitted distribution using the non-parametric approach described above.

Note that such a figure must be estimated for each time period and for each country

separately.

There are alternative parametric approaches used in the GaR literature, such

as the one followed by Adrian et al. (2019), where one has to estimate the best

t-skew distribution that fits the predicted quantiles. More specifically, one has to

find the best parameters that minimize the sum of square differences between the

predicted and fitted quantiles.5 While each fitting procedure has its own pros and

5 We note that the estimates of future growth distributions obtained from our model are similar
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cons, our GaR model follows a non-parametric approach in consideration of the

following features of parametric procedures:

• Parametric procedures are computationally more intensive, compared with

non-parametric approaches. This is because they are based on 4-parameter

functions that have to be estimated for each date and country.

• Moreover, such estimates are sensitive to the choice of the initial conditions,

an aspect that matters specially under adverse macrofinancial scenarios.

• Finally, parametric approaches impose a distributional shape that could not be

the adequate to represent the GDP growth distribution of individual countries.

The arguments above suggest that our non-parametric approach to fit the GDP

growth distributions provides a more flexible and simpler method that ensures the

replicability of the model in different contexts, avoiding large computational bur-

dens. Despite having followed this approach, we have paid special attention in

making the underlying GaR code flexible enough to incorporate alternative fitting

procedures that can be added depending on each analyst’s preferences.

2.4 Interpreting GaR results

Once the expected distribution of future GDP growth (conditional on macrofinancial

conditions) has been estimated, the GaR method provides a flexible platform to

explore the risk of negative GDP growth rates. The broad range of applications can

be grouped into three main categories: macroeconomic risk assessment, scenario

analysis, and policy evaluations. The most common output of a GaR model is

the estimation of the probability of recession over time, conditional on the stance

of macrofinancial conditions. That is, an analyst can explore different possible

scenarios depending on the conditions identified as affecting GDP growth prospects.

regardless of the use of parametric or non-parametric fitting procedures.
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Panel A: FCI (h = 1) Panel B: FCI (h = 8)

Figure 6: Results from a quantile regression. This panel reports an example
of how results from a quantile regression can be visualized and interpreted. Panel A
reports the coefficients with their corresponding 95 percent confidence intervals from
a regression of GDP growth against a financial conditions index (FCI) with a one
quarter horizon (h = 1). Panel B shows the results from the same estimation with
an eight quarters horizon (h = 8). The x-axis represents the GDP growth quantiles
corresponding to each coefficient, whose scale is depicted in the y-axis.

To interpret the results of a GaR model, a first step is to cautiously inspect the

results from the QR model. For expositional purposes, Figure 6 depicts the results

from a QR regression of GDP growth against a financial conditions index (FCI),

which increases with the degree of financial stress in an economy. The estimation

is based on a sample of five Latin American countries for the period from 1990

to 2020. The estimation depicted on Panel A shows that an increase in FCI (i.e.,

tighter macrofinancial conditions) can be associated with a decrease in the lower

quantiles of the GDP growth distribution, one-quarter-ahead.6

This result implies that financial shocks will shift the GDP growth distribution

to the left, leading to larger GDP growth losses. A one unit increase in FCI would

reduce, for instance, the 0.3 quantile of GDP growth by approximately 1.3 per-

centage points. Given that this quantile was estimated at a GDP growth rate of

approximately -2% in the distribution (see Figure 5), this increase in FCI would

reduce the 0.3 quantile to -3.3%.

6 These estimations are obtained from a panel including data from Brazil, Chile, Colombia,
Mexico, and Peru.
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This interpretation will be sensible to the the horizon h chosen for the estimation.

For example, it is likely that larger horizons will invert the sign of the identified

relationship, capturing the fact that a recovery phase following a period of crisis will

come along with increases in GDP growth. In fact, Panel B on Figure 6 shows that

in a 8-quarter-ahead horizon, an increase in FCI is associated with increases in the

lower quantiles of GDP growth.

Having estimated the conditional GDP growth distribution, the main result from

the GaR analysis can be derived. An example of an estimated GDP growth distri-

bution is depicted on Panel A in Figure 7. Given this distribution, we conclude

that there is a 5 percent probability that real GDP growth will fall by at least 0.7

percent over the next quarter (h = 1). Using the GaR wording, this conclusion can

be summarized as a GaR of -0.7 percent 1-quarter-ahead with a 5 percent probabil-

ity. This distribution allows also to derive the probability of experiencing a negative

GDP growth rate over the given horizon, which in this example corresponds to 11.4

percent.

The GaR estimation can be computed for each quarter over a long period us-

ing recursive rolling windows, illustrating ongoing and historical trends in the rela-

tionship between macrofinancial conditions and GDP growth. An example of this

exercise is depicted on Panel B in Figure 7 for our sample of 5 Latin American coun-

tries. The GaR estimations capture well known events affecting these economies,

such as the 2008 global financial crisis (GFC), and the COVID-19 pandemic. In

these major events we observe large increases in the estimated GaR. For example,

around the GFC the estimates went from a Growth at Risk of around 0 percent to

approximately -10 percent.7

7 The example depicted in Figure 7 can be extended to different metrics that can be drawn
from the GDP growth distribution. Researchers can, for instance, replicate the figure on Panel B
(GaR Estimates) by alternative measures. A few examples that have been used in the literature
include the skewness of the distribution, its standard deviation computed using rolling windows,
or the probability of negative GDP growth plotted over time.

18



Panel A: Expected GDP Growth

Panel B: GaR 1 quarter ahead

Figure 7: Results from a GaR estimation. This panel reports an example
of results derived from a GaR model. Panel A shows the expected GDP growth
distribution, conditional on the stance of macrofinancial conditions in a particular
quarter. In this example the distribution shows that GDP growth will be at least
-0.7 percent with a 5 percent probability one-quarter ahead. The probability of
experiencing a negative GDP growth rate is estimated at 11.4 percent. Panel B
depicts the GaR estimation for a set of Latin American economies estimated for
each quarter between 1990 and 2020 using recursive rolling windows and for a 1-
quarter-ahead horizon. These estimations are drawn from a panel including data
from Brazil, Chile, Colombia, Mexico, and Peru.
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Panel A: Predictive Score Panel B: Expected Shortfall and Longrise

Figure 8: Post-estimation metrics for Brazil. This figure shows the predictive
score, the expected shortfall, and the expected longrise, for Brazil from the panel
data. On Panel A, we report the predictive score of the full model with lagged
GDP growth, orthogonalized FCI, and VIX as regressors (blue), as well as a simpler
model including only lagged GDP growth (red). On Panel B, we report the expected
shortfall (orange line), the expected longrise (green line), and the observed GDP
growth as reference (blue line).

An important aspect to consider when estimating GaR models is how to evaluate

the precision and the economic relevance of the estimations. Following Adrian et al.

(2019), we compute a set of post-estimation tests to shed light on the performance

of the distribution estimation f̂t+h, represented by the fitted distribution obtained

from quantiles Q̂τ
i,t as in Eq. 6.

First, we measure the precision of the estimates by using the predictive score

PSt+h of the estimation, given by:

PSt+h = f̂t+h(ȳ), (7)

where ȳ is the observed value of the dependent variable at t + h, and PSt+h corre-

sponds to the likelihood of realized values under f̂t+h.

Second, we consider a measure of the tail risk given the estimated distribution,
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defined either as the shortfall function SFt+h (left tail):

SFt+h =
1

π

∫ π

0

F̂−1
yt+h|xt(τ |xt)dτ, (8)

or as the longrise function LRt+h (right tail), defined as:

LRt+h =
1

π

∫ 1

1−π
F̂−1
yt+h|xt(τ |xt)dτ, (9)

where F̂−1 is the inverse of the associated cumulative density function to f̂ , and π is

a probability level. SFt+h corresponds to the conditional mean of f̂ on the left tail,

that is, the expected value once we go below the quantile associated to π. Lower

expected shortfalls represent heavier left tails and riskier distributions. Similarly,

LRt+h is the conditional mean to values above the quantile associated to 1− π.

In Figure 8, we illustrate these metrics using the estimation of the GaR model

for Brazil for the period 2016-2020, and a time horizon of one quarter. In Panel A

we show the results of the predictive score metric when comparing a baseline model

including only lagged GDP growth as an explanatory variable (red line) against

a more complete model including also the VIX index and the orthogonalized FCI

index (blue line). In general, the more complete model has a higher predictive score.

Panel B shows the expected shortfall (orange line) and longrise (green line),

capturing the tail risk of the estimated distributions for Brazil. As a reference, we

include the observed GDP growth rate in blue. The upward trend towards 0 between

2016 and 2018 reflects a scenario in which the tail risks are reduced. On the contrary,

the sharp decrease in the measure following the outbreak of the COVID-19 pandemic

in 2020 implies an increase in the left-tail risk. Even more, in 2020 some observed

values fell outside the respective range of the two metrics.8

8 This has a stark contrast with the Great Financial Crisis, also captured in the panel. We note
that prior to 2020, the parallel movement of the metrics on Panel B is due in part to a persistent
shape in the estimated distributions, which only vary by a right shift during that period. This
trend contrasts with the dynamics after the COVID-19 outbreak, where the realized GDP growth
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Figure 9: Pseudo R2 of the panel estimation. The values reflect the explana-
tory capacity of the model f̂ beyond ĝ. We mark the ordered quantiles in a shade
from red to blue from lower to higher quantiles, according to the color scale on the
left. Lower quantiles tend to have a better fit than higher quantiles, except for the
period of the COVID-19 crisis.

Finally, researchers can also rely on a pseudo-R2 metric computed for each quan-

tile estimated on f̂ and ĝ in Eq. 9, as shown in Figure 9. In this figure, the color

scale that goes from red to blue represents a range of lower to higher quantiles, re-

spectively. In general, the model tends to have a better fit for the lower part of the

distribution. However, the figure clearly reflects how the model loses its explanatory

power around the COVID-19 crisis, especially for the lower quantiles.

Overall, the COVID-19 crisis in 2020 exhibits an atypical pattern in all three

previous panels, representing a period in which the predictive score of the model

decreases and the left-tail risk increases, while the fitting capacity of the model is

deteriorated.

rate falls outside the already shifted risk metrics as a consequence of this unexpected shock.
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3 Financial Conditions Index

This section describes the construction of a Financial Conditions Index for a panel of

Latin American economies using country-level data. This index follows and adapts

the Country-Level Index of Financial Stress (CLIFS) methodology developed by

Duprey et al. (2017). For the purposes of the index, we define financial stress as

financial turbulence for several markets and asset classes. This index can be used

to feed a GaR model with a proxy of domestic macrofinancial conditions.

The construction of the CLIFS is based on the indicator of systemic stress (CISS)

proposed by Holló et al. (2012). The construction of the CISS exploits the correlation

of financial stress across different market segments to create a composite indicator.

These correlations are therefore used as weights to aggregate different sub-indices.

By following this approach, the aggregated indicator considers the market-to-market

spillovers that can be triggered when a single segment experiences a stress scenario.

The CLIFS relies on data from three financial market segments:

• Equity markets, as captured by a stock price index (STX);

• Bond markets, as captured by government yields for a fixed maturity (Ryr),

preferably based on 10-year bonds; and

• Foreign exchange markets, as captured by the real effective exchange rate

(rEER) computed as the geometric average of bilateral exchange rates weighted

by bilateral trade volumes.

We use data from 2004 to 2020 for Chile, Mexico, Colombia, Peru and Brazil

to compute the index. Most data are taken from Haver Analytics and from central

banks’ websites, providing information available at a daily and monthly frequency.

The series of real effective exchange rates were obtained from the International

Monetary Fund (IMF) at a monthly frequency. Despite our focus on a set of Latin
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American economies, the statistical code generated to compute the CLIFS index

can be extended to include other countries or variables of interest.

Three main reasons justify our choice of following the CLIFS methodology when

constructing a financial stress index. First, this approach reduces concerns about the

comparability of financial stress indicators across countries, as we rely on sub-indices

based on simple variables which are commonly used in cross-country comparisons.

Second, we can consider the contribution of financial stress sub-indices which do

not necessarily co-move with each other. Finally, the sensitivity to outliers affecting

alternative aggregation procedures such as PCA may worsen the problem of a sample

with atypical values or stress events (Kremer et al., 2012).9

For each market segment, the CLIFS approach constructs two indicators reflect-

ing each two characteristics of financial stress:

• Uncertainty, measured with a volatility metrix; and

• Market deterioration, measured with a cumulative performance metrix.

Given the long time series often used in GaR estimations, a relevant question is

how a researcher can ensure the comparability of the stress scenarios over time. A

first procedure consists in adjusting the data to purge the effects of inflation. To

go from nominal stock market indies (STX) and government yields (Ryr) to real

values we consider the following transformations:

• rSTXt is obtained by dividing STXt by the corresponding interpolation of a

daily consumer price index CPIt.
10

• rRyr is obtained by removing the estimated annual inflation CPIt−CPIt−260

CPIt−260

using interpolated CPIt data values from Ryr. The time frame between t−260

and t stand for a year in workdays.

9 We note that in the presence of outliers, the total variance computed in PCA estimations will
be affected by these atypical observations, introducing a bias.

10 Consumer price indices are produced on a monthly basis (see eq. 12, Appendix A.1).
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• By construction, the measure of foreign exchange market stress rEER is al-

ready expressed in real terms.

The uncertainty dimension is calculated using return-like variables as follows:

• The daily logarithmic return for equity, i.e., the logarithm of rSTXt divided

by rSTXt−1 and labeled as lnSTXt.

• The daily changes as differences for bond markets, i.e., rRyrt minus rRyrt−1,

labeled as chRyr.11

• The monthly logarithmic return for the real exchange rate, i.e., the logarithm

of rEERt divided by rEERt−1, labeled as lnEERt.

We further standardize these variables by scaling them with the standard devia-

tion σX,t of variable X considering the observations comprised in the past 10 years

prior to time t. 12 This procedure ensures that the overlapping rolling windows gen-

erate comparable values. 13 In terms of notation, this procedure yields the following

scaled variables:

• From lnSTX to
∼

lnSTX.

• From chRyr to
∼

chRyr.

• From lnEER to
∼

lnEER.

With these variables at hand, the stress indicators can be summarized as follows:

• Equity market stress indicator

11 We use changes and not growth rates since, for some periods, very low real yields would create
excessively large variations when measured as growth rates.

12 For the first ten years of observations, we set the denominator constant and equal to the
standard deviation of the first ten-year rolling window.

13 Scaling by the standard deviation of the entire series would produce another series with the
same pairwise relative magnitudes.
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– V STX: the monthly realized volatility, computed as the monthly average

of absolute daily log-returns
∼

lnSTX.

– CMAX: the cumulative maximum loss, computed as the loss at each

point in time compared to the highest level of the stock market index in

a rolling two-years period.

• Bond market stress indicator

– V yr: the monthly realized volatility, computed as the monthly average

of absolute daily changes in
∼

chRyr.

– CDIFF : the difference between the maximum real government bond

spread rRyr (in basis points) with respect to United States bonds and

the current spreat at time t in a two-years window.

• Foreign exchange market stress indicator

– V EER: the realized volatility, computed as the absolute value of (
∼

lnEER).

– CUMUL: the cumulative change over six months in the real effective ex-

change rate, computed as the absolute value of the difference in a semester

|
∼

lnEERt −
∼

lnEERt−6|, reflecting that longer-lasting changes in the real

effective exchange rate should be associated with more severe stress.

The next step is to aggregate these variables into a single indicator. Given the

different scales in which the indicators are computed, we begin by transforming each

variable Z into Ẑ, corresponding to a map of its values into the [0, 1] interval. This

standardization can be achieved with two alternative methods:

• Method A: The transformation is carried out by the evaluation of the empirical

cumulative density function obtained from an expanding time window. For the

observation zt, we map it into ẑ = FZ,T (zT ) = k
T

, such that zT is the k-th order
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statistic from the set of observed values {z1, . . . , zT}. For all the times T that

fall below an initial threshold T ≤ T ?, we set FZ,T = FZ,T ? .

• Method B: The transformation is done by a successive escalation by a maxi-

mum value drawn from within an expanding time window. For the observation

zt, we map it into ẑ = ST (zT ) = zT
z?

, where z? = maxt∈{1,...,T} zt, that is, the

maximum value from the set of observed values {z1, . . . , zT}. For all the times

t that fall below an initial threshold T ≤ T ?, we set ST = ST ? .14

By selecting the Method A, one gives more weight to ordinal relations among

observations, while Method B is closer to a re-scaling of the original series giving

more importance to relative magnitudes.

As an example, Figure 10 depicts the series of the cumulative difference stress

indicator CDIFF from 2007 to 2020 for Chile (blue lines), contrasted with stan-

dardized series from Methods A and B (orange lines). In the left panel, we mark the

points in time t1 and t2, representing the local peaks in the original series. We note

that despite the difference in magnitude, Method A reduces the difference between

the peaks more than proportionally in the standardized values, since t2 is closer in

order to t1. Given that the value at t1 is the overall maximum and occurs earlier

in time, the standardization by Method B produces a scaled version of the original

series, explaining the overlap in the panel (despite the different scales).

14 This method is not included in the approach by Duprey et al. (2017)
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Method A Method B

Figure 10: Standardization of the stress indicators CDIFF . This figure
illustrates the standardization Methods A and B using as an example the GaR
estimations for Chile between 2007 and 2020. The left panel shows a standardization
with Method A, by the empirical cumulative density function. Method B is shown
on the right panel, with a standardization based on maximum values obtained from
rolling windows.

The transformed indicators are averaged within each market segment into the

sub-indices ISTX = 1
2
( ˆV STX + ˆCMAX), IRyr = 1

2
( ˆV Ryr + ˆCMIN), and IEER =

1
2
( ˆV EER+ ˆCUMUL). That is, each sub-index has an equally weighted contribution

from a volatility and a performative aspect. This transformation avoids imposing

an arbitrary weight between the two sources of stress (i.e., the volatility and perfor-

mance indicators).

As an example, consider Figure 11, in which we depict a toy example for the

stock market index with four 20-day time windows. This example is intended to ease

the interpretation of how the stress indicators react to changes in the underlying

variable. Consider the first window as a base case, representing a scenario with loose

financial conditions (despite the level of the variable). The next two windows depict

a tightening in only one of the two stress indicators; its final impact will depend

on their relative magnitudes. Finally, the fourth window shows the worst scenario

with a deterioration in both stress indicators and an evident tightening in financial

conditions. The sub-index reflects at its extreme values of 0 and 1 (right y-axis)

stable growth versus an erratic and negative drift, respectively.
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Figure 11: Toy example of STX. This figure shows a hypothetical example of
the behavior of the stock market indicator. The blue line represents a stock index
over four months, i.e., four 20-working day time windows separated by vertical black
lines (which show the respective end of period). The dashed orange line represents
the sub-index ISTX . For each time window, we describe the level of the stress
indicators with either a high (↑) or low (↓) mark at the bottom of the plot.

Based on the series of sub-indices, we next produce the series of pairwise corre-

lations ρSTX,Ryr, ρSTXEER and ρRyr,EER, estimated with an exponentially weighted

moving average.15 Finally, the aggregation of the sub-indices into the Financial

Conditions Index is represented by Eq. 10:

FCIt = I2
STX + ρSTX,Ryr,tISTXIRyr + ρSTX,EER,tISTXIEER

+ρSTX,Ryr,tISTXIRyr + I2
Ryr + ρRyr,EER,tIRyrIEER

+ρSTX,EER,tISTXIRyr + ρRyr,EER,tIRyrIEER + I2
EER.

(10)

As Eq. 10 suggests, the calculation stems from a double matricial product be-

tween a vector index and the pairwise correlation matrix16. The complete expan-

sion helps to highlight the spillover effects between segments as one of the potential

sources of financial markets stress in the aggregate index. The main takeaway of

Eq. 10 is that financial stress will arise either (i) due to an (idiosyncratic) increase

15 This procedure is a simplification of a GARCH estimation. We refer to Duprey et al. (2017)
for further details.

16 The vectorial and matricial notation is described in detail in the appendix
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Box 1. Estimating the Financial Conditions Index for Mexico

This Box describes the performance of the Financial Conditions Index and

its components for Mexico during the period from 2004 to 2020. The

COVID-19 pandemic is highlighted by a shaded area in the graphs below.

A tightening in the financial conditions is shown as an increase in the value

of the composite index and its underlying sub-indices. At the onset of the

COVID-19 crisis, the index signals a deterioration, particularly in the first

quarter of 2020. In the same time window, the individual sub-indices tend

to peak, while the correlations tend to align closer to 1.
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Overall, the Mexican example shows that the sub-indices can capture rele-

vant shocks in the Mexican economy, such as the global financial crisis or

the COVID-19 pandemic. Also, the high levels of the bilateral correlations

at the onset of these major shocks illustrate the amplification effect in the

economy represented by the spillovers between market segments.
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in the sub-indices, (ii) due to an increase in the pairwise correlation between market

segments, or (iii) due to a combination of (i) and (ii).17

To illustrate the estimation of the financial conditions index and the interpre-

tation outlined above, Box 1 discusses for the case of Mexico the performance of

the different sub-indices (Panels a, b, and c) and the aggregate index (Panel e)

over the 2004-2020 sample period with a quarterly frequency. This Box also shows

the performance of the bilateral cross-correlations between sub-indices used in the

aggregation procedure (Panel d).

The year 2020 is shaded to highlight the period in which the effect of the COVID-

19 crisis can be visualized. Moreover, Panel d shows how the bilateral correlations

between sub-indices vary over time, highlighting the importance of capturing the

time-varying nature of market-to-market spillovers that explain the aggregate im-

plications of segment-specifics increases in market stress.

4 Applying GaR for policy analysis

This section summarizes a few alternatives for policymakers when applying GaR

methods for policy analysis. While a detailed description of these approaches is

beyond the scope of this article, the explanation below aims at guiding an interested

reader in identifying possibilities for policy analysis within the GaR framework. We

refer to the IMF report by Prasad et al. (2019) as a reference on more detailed

descriptions of possible policy applications.

GaR as a benchmark to compare GDP growth forecasts. One application

considers using the estimated GDP growth distribution as a benchmark to compare

alternative GDP growth forecasts. This comparison can take two possible forms.

17 We note that Eq. 10 does not include any country-specific parameters. This feature of
the index facilitates the comparability across countries by remaining agnostic about the actual
contribution of different market segments to financial stress.
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First, an analyst can evaluate whether an alternative forecast of the GDP growth

distribution is similar in terms its related GaR at 5 percent of probability compared

to the baseline GaR model. More optimistic or pessimistic forecasts would identify

a different mode and shape in the GDP growth distribution. Second, the estimated

GaR model can be used to explore whether alternative forecasts provide a reasonable

assessment of macrofinancial risks identified in the quantile regressions. Prasad et al.

(2019) provide a few examples of how these comparisons can be implemented.

Scenario analyses under different macrofinancial conditions. GaR esti-

mates can be used to perform scenario analysis in which relevant macrofinancial

risks are assumed to be shocked. Graphically, this scenario analysis resembles the

exercise reported in Figure 2. Since the GDP growth distribution is estimated con-

ditional on the stance of macrofinancial risk, an analyst can ask how the distribution

would change given tighter macrofinancial conditions. The relevant output measure

in this case is the increase in GaR given a one standard deviation increase in, say,

a financial conditions index.18

Identifying changing patterns in GDP growth risk factors. GaR models

can also be used to trace the relevant importance of different macrofinancial variables

in affecting GDP growth prospects. The relevance of risk factors can differ both

across countries as well as over time within a given country. The IMF has used

GaR models to identify, for instance, that downside risks to future growth can

be disproportionately affected in certain countries by factors such as commodity

prices, China’s growth, or trends in global US Dollar prices. The size of the risk

signal represented by these variables is likely to change even in short-term horizons.

18 It should be recalled that the variables included in the quantile regressions may affect the
distribution in different ways, leading either to a shift in the distribution’s mean or the changes
in the shape of the distribution’s tails. This analysis can tell us, for instance, that a one standard
deviation increase in a particular macrofinancial risks (e.g., the VIX index) increases the probability
of negative growth by a given percent. Adrian et al. (2019) provides several examples of how these
scenario analyses can be performed.
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Box 2. Example of a policy evaluation using quantile regressions

with interaction terms

The baseline QR model represented in Eq. 2 can be adapted to incor-

porate interaction terms between macrofinancial variables of interest and

variables capturing the stance of policy actions. Some studies have relied,

for instance, on data from the international macroprudential databases by

Cerutti et al. (2017) or Nier et al. (2018).

Eq. 11 shows an example of an interaction QR model. In this example the

variable of interest is the financial conditions index FCI which is computed

for country i at quarter t for a particular horizon of analysis h:

QGDPi,t+h
= αh(τ) + β1,h(τ)FCIt + β2,h(τ)Policyi,t (11)

+β3,h(τ)FCIt ∗ Policyi,t + εi,t

This model includes an interaction term between FCI and the variable

Policy, which represents a macroprudential policy index ranging from 0 to

1 depending on the tightness of macroprudential regulation in country i

during quarter t. Double-causality concerns can be addressed, for instance,

by lagging the variable Policy in further quarters (e.g., t-3) in order to

separate de policy decisions from current macro trends.

The coefficient β3,h(τ) represents the heterogeneous effect of FCI on a given

quantile τ of the GDP growth distribution conditional on a particular stance

of the policy index. For example, Eguren-Martin et al. (2021) use a similar

model to find that the effect of tighter global financial conditions on the

distribution of capital flows is moderated when macroprudential policies are

in place.
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Therefore, frequent updates of GaR estimates can guide policymakers in timely

identifying sectoral risk exposures.

Policy evaluation and macroprudential regulation. Analysts interested in

evaluating the effect of policies on the expected GDP growth distribution may also

adapt the GaR environment for this purpose. Relevant questions include, for in-

stance, whether differential shifts in the distribution occur when macroprudential

policies are in place. Similarly, one could exploit panel settings to explore differ-

ences in the effect of global financial conditions depending on countries’ stance of

monetary, fiscal, or regulatory policies. Overall, three approaches for these analyses

can be considered.

• Heterogeneous effects across periods or jurisdictions. The simplest

approach to explore the effect of policies in a GaR environment is to repeat

the baseline estimation considering separately periods during which certain

policies have been implemented. Similarly, one can group countries/regions

according to shared characteristics in terms of policy actions (e.g., those with

active counter-cyclical capital buffers).

• Including macrofinancial variables. Alternatively, one can include a proxy

for policy measures as a further variable alongside the other macrofinancial

variables in the quantile regressions. For example, one can use country-level

proxies for the intensity of the use of macroprudential policies. This variable

would enter the GaR model as a stand-alone variable, allowing for exploring

changes in GaR driven by the activation of policy measures.19

• Interaction models. A more complex but insightful approach is to adapt the

baseline GaR model to include interaction terms between macrofinancial vari-

ables and proxies for the stance of relevant policies in the quantile regressions.

19 Galán (2020) provides an example of this approach, finding that macroprudential policies do
affect the left tail of estimated GDP growth distributions, with heterogeneous effects depending
on the horizons considered.
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Box 3. The performance of GaR estimation under unexpected

exogenous shocks

The example of Chile helps to illustrate the performance of a GaR estima-

tion when an economy faces an unexpected an exogenous shock. The chart

below depicts the estimated distributions for the Chilean case in black, and

the actually observed GDP growth rates in red for the period from 2019Q4

to 2020Q4. In this period, Chile experienced first a shock represented by

large protests and social unrest in 2019Q4. Then, in 2020Q1 the country

was further affected by the COVID-19 pandemic.

When these shocks hit the economy, the observed GDP growth rate falls

to the left of the expected distribution, while sharp recovery trends such

as the one observed in 2020Q4 also fall outside the range of the estimated

distribution. This exercise reflects that GaR models are estimated by a

backward-looking approach that may not anticipate sudden changes in sce-

narios not captured by macrofinancial fundamentals.
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This approach, for which we provide an example in Box 2, allows researchers

to explore non-linear effects of macrofinancial variables on the GDP growth

distribution.20

5 Conclusion

This article provides a technical description on estimating GaR models using an R-

based statistical code developed at the Center for Latin American Monetary Studies

(CEMLA) under the frame of the C-GARP initiative. The C-GARP initiative pro-

vides an open-source platform for GaR estimations, allowing users to implement

analyses tailored to the needs and characteristics of different jurisdictions.

This statistical code provides a platform to perform four key steps in the GaR

approach: (i) the construction of a country-level financial stress index based in the

CLIFS methodology; (ii) the estimation of quantile regressions exploring the effect of

macrofinancial conditions on GDP growth; (iii) the computation of fitted expected

GDP growth distributions; and (iv) the evaluation of stress scenarios.

The exercises reported for a set of Latin American economies show that the GaR

model can provide a useful assessment of how the severity of systemic risk impacts

an economy. While the conclusions drawn from a GaR model can be informative to

calibrate macroprudential policy responses, caution must be exercised when evalu-

ating policy trade offs and ultimate causal sources of financial stress. We therefore

remark that incorporating GaR models for policy analysis is best done when differ-

ent methodological tools are combined within a more general framework. Overall,

our conclusions support the notion that GaR models can fill missing gaps when

quantifying the severity of macrofinancial risks.

20 Eguren-Martin et al. (2021) provide an example of this approach by estimating the conditional
distribution of capital flows in a panel of emerging countries. The authors find that active macro-
prudential policies moderate the pass-through of macrofinancial shocks to shifts in the distribution
of capital flows.
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A Appendix

A.1 FCI formulas

In this section we describe in more detail the process to obtain the Financial Condi-

tions Index. The overall process is described in Figure 12, where the notation follows

Duprey et al. (2017) and the variable names in the code, which are also summarized

in Appendix A.2.

STX

Ryr

V STX
CMAX

V EER
CUMUL

V Ryt
CDIFF

ISTX

IRyr

IEER FCI

 1 ρSTX,Ryr ρSTX,EER

ρSTX,Ryr 1 ρRyr,EER

ρSTX,EER ρRyr,EER 1



equity

bonds

real effective
exchange rates

Aggregation via
the correlation matrix

of the sub-indices

rSTX

rRyr

rEER

Figure 12: FCI computation process.

First, the following equation blocks specify the transformation process to con-

struct the stress indicators for the equity, bond market, and exchange market seg-

ments mentioned in Section 3.
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Equity market =



rSTXt =
STXt

CPIt

lnSTXt = log rSTXt − log rSTXt−1

∼
lnSTXt =

lnSTXt

σlnSTXt,t−lagTilde

V STXt =

∑lagPeriod
i=0

∣∣∣ ∼
lnSTXt−i

∣∣∣
lagPeriod

CMAXt = 1− rSTXt

maxlagWindow
i=0

∼
lnSTXt−i

(12)

(13)

(14)

(15)

(16)

Bond Market =



rRyrt = Ryrt −
CPIt − CPIt−lagY ear

CPIt−lagY ear

chRyrt = rRyrt − rRyrt−1

∼
chRyrt =

chRyrt
σchRyrt,t−lagTilde

V Ryrt =

∑lagPeriod
i=0

∣∣∣ ∼
chRyrt−i

∣∣∣
lagPeriod

CDIFFt = rRyrt − rRbst −
lagWindow

min
i=0

(rRyrt−i − rRbst−i)

(17)

(18)

(19)

(20)

(21)

The frequency of the information for the equity (STX) and bond markets (Ryr)

is daily, so that t stands for a workday indexation. The consumer price index (CPI)

is interpolated between available dates to estimate daily values. The rolling time

windows parameters lagT ilde, lagPeriod and lagWindow are set to resemble 10

years, one month, and 2 years, respectively.

When computing the variable CDIFFt, the variable rRbs represents the yield

of an advanced economy used as a benchmark. In our case, we employ the U.S.

economy.
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Foreign exchange market =



lnEERt = log(rEERt)− log(rEERt−1)

∼
lnEERt =

lnEERt

σlnEERt,t−lagTildeMonth

V EERt =
∣∣∣ ∼
lnEERt

∣∣∣
CUMULt = |rEERt − rEERt−lagWindowMonth|

(22)

(23)

(24)

(25)

The frequency of the foreign exchange market is monthly, so t stands for an end-

of-month indexation. The rolling time windows parameters lagT ildeMonth and

lagWindowMonth are set to resemble 10 years and 6 months, respectively.

Second, we obtain the stress sub-indices from the stress indicators. We consider

end-of-month ẑt values for the daily stress indicators as our monthly values. Each

stress indicator is transformed into the interval [0, 1] according to one of the following

methods:

• Method A:

ẑ = FZ,T (zT ) =
k

T
, (26)

such that zT is the k-th order statistic from the set of observed values {z1, . . . , zT}.

For all the times T that fall below an initial threshold T ≤ T ?, we set

FZ,T = FZ,T ? .

• Method B:

ẑ = ST (zT ) =
zT

maxt∈{1,...,T} zt
(27)

For all the times T that fall below an initial threshold T ≤ T ?, we set ST = ST ? .

for zk in {V STX,CMAX, V Ryr, CDIFF, V EER,CUMUL}.
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With the transformed stress indicators, we obtain the averages of the stress

indicators for each segment, grouping them into a sub-index vector It:

Sub-indices =



ISTX =
ˆV STX + ˆCMAX

2

IRyr =
ˆV Ryr + ˆCDIFF

2

IEER =
ˆV EER + ˆCUMUL

2

It = [ISTX , IRyr, IEER]

(28)

(29)

(30)

(31)

The final step consists in the aggregation of the sub-indices in a final stress

index. We estimate the pairwise correlations for the elements in It with the following

simplification:

Estimation of variances and correlations =



σi,j,t = λσ2
i,j,t−1 + (1− λ)s̄i,ts̄j,t

σ2
i,t = λσ2

i,t−1 + (1− λ)s̄2
i,t

ρi,j,t =
σi,j,t

σi,tσj, t

(32)

(33)

(34)

Following Duprey et al. (2017), λ is set as 0.85.

With these correlations, we construct the correlation matrix:

Ct =


1 ρSTX,Ryr,t ρSTX,EER,t

ρSTX,Ryr,t 1 ρRyr,EER,t

ρSTX,EER,t ρRyr,EER,t 1

 (35)

Finally, the Financial Conditions Index is the double product between the cor-

relation matrix, and the sub-indices vector It:

FCIt = It · Ct · I ′t (36)
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A.2 Variable Definition

Table 2: Variables definition

Variable Definition Unit and Sources

GaR Variables

GDP Growth (GDP ) Year-to-year GDP growth rate. Percent. (Haver
Analytics)

VIX (V IX) CBOE Volatility Index Index unit.
(CBOE)

FCI (FCI) Financial Conditions Index. Index unit. (Own
calculation)

Financial condition
index variables

Capital (STX) Stock-market index per country. Index unit.
(Investing.com,
Yahoo Finance,
CBs)

Government yield
(Ryr)

Rate associated to a fixed node of a
government bond.

100 bps.
(Investing.com,
CBs)

Real effective
exchange rate (rEER)

The value of a country’s exchange rate
against a weighted average of several foreign
currencies divided by a price deflator or index
of costs.

Index. (IMF,
BCRP)

Consumer price index
(CPI)

Index of the average change over time in the
prices of a market basket of consumer goods
and services.

Index. (St. Louis
FRED, Haver
Analytics.)

Notes: This table provides a description of the main variables used for the empirical analysis
reported in the paper. Sources are reported in parentheses. Sources are not reported for variables
resulting from the transformation of other variables.
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Table 2: Variables definition (continued)

Variable Definition Unit and Sources

Financial condition
index variables

Reference government
yield (Rbs)

Government rate at a fix node of a reference
advanced economy.

100 bps. (U.S.
Treasury)

Reference consumer
price index (CPIbs)

Consumer price index of a reference advanced
economy.

Index. (St. Louis
FRED.)

Real stock index
(rSTX)

Deflated stock indices. Scaled index.

Stock log-returns
(lnSTX)

Daily log-returns of deflated capital market
indices.

Percent.

Standardized stock

log-return (
∼

lnSTX)

Standardization of log-returns with respect
the s.d. over a rolling time window.

Percent.

Realized volatility of
stock (V STX)

Monthly realized volatility of the scaled stock
indices log-returns.

Dimensionless.

Range-based stock
stress (CMAX)

Comparison of the observed log-returns and
the maximum over a rolling time window.

Percent.

Real yield (rRyr) Real government yields 100 bps

Yield change (chRyr) Daily yield changes 100 bps

Standardized yield

change (
∼

chRyr)

Standardization of yields with respect the
s.d. over a rolling time window.

Dimensionless.

Notes: This table provides a description of the main variables used for the empirical analysis
reported in the paper. Sources are reported in parentheses. Sources are not reported for variables
resulting from the transformation of other variables.
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Table 2: Variables definition (continued)

Variable Definition Unit and Sources

Financial condition
index variables

Realized volatility of
yield (V Ryr)

Monthly realized volatility of the scaled
yields.

Dimensionless.

Range-based yield
stress (CDIFF )

Comparison of the observed yield gaps to the
reference real yield and the its minimum over
a rolling time window.

Percent.

Real exchange
effective rate
log-return (lnEER)

Montly log-return of real effective exchange
rates.

Percent.

Standardized real
effective exchange rate

log-return (
∼

EER)

Standardization of the log-returns with
respect the s.d. over a rolling time window.

Dimensionless.

Realized volatility of
real eff. ex. rate
(V EER)

The absolute value of the observed log-return
for the month.

Dimensionless.

Cumulative change
(CUMUL)

6-month cumulative change. Percent.

Transformed
volatility-based stock

stress (
∼

V STX)

Transformed volatility-based stock stress. Dimensionless.

Transformed
volatility-based yield

stress (
∼

V Ryr)

Transformed volatility-based yield stress. Dimensionless.

Transformed
volatility-based ex.

rate stress (
∼

V EER)

Transformed volatility-based ex. rate stress. Dimensionless.

Notes: This table provides a description of the main variables used for the empirical analysis
reported in the paper. Sources are reported in parentheses. Sources are not reported for variables
resulting from the transformation of other variables.
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Table 2: Variables definition (continued)

Variable Definition Unit and Sources

Financial condition
index variables

Transformed
range-based stock

stress (
∼

CMAX)

Transformed range-based stock stress. Dimensionless.

Transformed
range-based yield

stress (
∼

CDIFF )

Transformed range-based yield stress. Dimensionless.

Transformed
range-based ex. rate

stress (
∼

CUMUL)

Transformed range-based ex. rate stress. Dimensionless.

Stock sub-index
(ISTX)

Average of the stock stress indicators. Dimensionless.

Rate sub-index (IRyr) Average of the yield stress indicators. Dimensionless.

Exchange rate
sub-index (IEER)

Average of the exchange rate stress
indicators.

Dimensionless.

Stock-rate correlation
(ρSTX,Ryr)

Estimation of the Stock-rate correlation. Dimensionless.

Stock-ex. rate
correlation
(ρSTX,EER)

Estimation of the Stock-ex. rate correlation. Dimensionless.

Rate-ex. rate
correlation (ρRyr,EER)

Estimation of the Rate-ex. rate correlation. Dimensionless.

Financial Conditions
Index (FCI)

Financial Conditions Index, based on
Country-Level Index for Financial Stress.

Dimensionless.

Notes: This table provides a description of the main variables used for the empirical analysis
reported in the paper. Sources are reported in parentheses. Sources are not reported for variables
resulting from the transformation of other variables.
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